

TIS - Hot Water Cylinder Selection Guide – 9.0 Page(s) 1 of 6

Hot Water Cylinder Selection Guide

Performance

The performance of any hot water (DHW) cylinder is dependent on a number of factors which all combine to provide the final temperature produced at the cylinder. It is very important to get these factors correct or the performance of the cylinder may be compromised and end-user expectations not reached.

Two main factors which can affect the final temperature of the hot water cylinder are coil size and flowrate.

Coil Size

As heat pumps require higher flow rates, the transfer of heat into the water within the cylinder requires a larger coil surface area. This has to be the true surface area of the coil and not 'fins' attached to the coil. A minimum guide of $0.25m^2$ coil surface area is recommended per kW thermal output of the heat pump.

Flowrate

Again due to the higher flow rates required as opposed to a fossil boiler, hot water cylinders generally require a larger diameter coil. If the coil in the tank is of too small diameter, this high flowrate can increase the pressure drop across the coil. If care isn't taken the pressure drop can exceed the amount of pressure available from the water pump within the heat pump and result in lower stored temperatures within the tank.

Other factors which can also affect the final stored temperature within the tank include: distance of the hot water cylinders from the heat pump; distance from the point of usage; and the plumbing configuration of any secondary returns or towel rails.

The following pages show different tables for the types of hot water cylinder configurations and shows a single coil tank and a twin coil tank for use with solar.

It is important in both twin tank configurations that a reverse return piping arrangement is used for the piping to and from the coils and the domestic hot water tank outlets and inlets, otherwise the tanks will not reach the correct temperatures together.

Kensa has partnered with leading cylinder manufacturers to provide mains pressure cylinders featuring enhanced surface area coils which are designed specifically for heat pumps.

Selection charts of Kensa heat pumps witdesigned specifically for heat pumps. h Advance Appliance, McDonald and Joule hot water cylinders are contained within this document taking into account testing results. (However this is a guide only as the installation can also affect performance.)

Any pairing of EVO and any manufacturers cylinders may require immersion boost for legionnaires protection

TIS - Hot Water Cylinder Selection Guide – 9.0 Page(s) 2 of 6

Hot Water Cylinder Selection Guide

Advance Appliances Hot Water Cylinders

Single Tank

		Single Coil									
	150	215	250	305	400	500					
Kensa Part											
Number	95-060A	95-061A	95-069A	95-070A	95-071A	95-072A					
	25	25	32	32	32	32	Coil size (mm)				
Heat Pump							Meter Coil size				
Load Size	2	3	3	3	3	3	(m ²)				
3	\checkmark	\checkmark	✓(LR)	✓(LR)	✓(LR)	✓(LR)					
6	\checkmark	\checkmark	\checkmark	\checkmark	✓(LR)	✓(LR)					
7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
13	×	×	\checkmark	\checkmark	\checkmark	\checkmark					
15	×	*	\checkmark	\checkmark	\checkmark	\checkmark					
17		17kW Evo should not be used for DHW									

LR—Long Reheat Time

400

95-

32

4

 \checkmark

or DHW

✓ (LR)
 ✓ (LR)
 ✓ (LR)
 ✓ (LR)
 ✓ (LR)
 ✓ (LR)
 ✓ (LR)

500

95-

32

4

✓ ✓

238A 196A

TIS - Hot Water Cylinder Selection Guide – 9.0 Page(s) 3 of 6

Hot Water Cylinder Selection Guide

McDonald Hot Water Cylinders

Single Tank

				50						Ι Γ						
				EC	OFlow	Single	Coil					0	STEELfl	ow Sin	gle Coi	
		150	180	210	250	300	400	300	400		150	170	200	250	300	4
Kensa																
Part		95-	95-	95-	95-	95-	95-	95-	95-		95-	95-	95-	95-	95-	
Numbe	r	225A	226A	227A	228A	229A	230A	231A	232A		233A	234A	235A	236A	237A	2
										Coil						
										size						
		28	28	28	28	28	28	28	28	(mm)	32	32	32	32	32	
Heat										Meter						
Pump										Coil						
Load										size						
Size		1.32	1.32	1.76	1.76	1.76	1.76	3	3	(m²)	2	2	3	3	3	
3		\checkmark	\checkmark	\checkmark	✓(LR)	✓(LR)	\checkmark	×	×		\checkmark	\checkmark	\checkmark	✓(LR)	✓(LR)	V
6		\checkmark	\checkmark	\checkmark	\checkmark	✓(LR)	\checkmark	×	×		\checkmark	\checkmark	\checkmark	\checkmark	✓(LR)	~
7		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓(LR)	✓(LR)		\checkmark	\checkmark	\checkmark	\checkmark	✓(LR)	~
9		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~							
13		×	×	>	\checkmark	\checkmark	>	\checkmark	\checkmark		×	×	×	×	*	
15		×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		×	×	×	×	×	
17			17kV	V Evo sl	nould no	ot be us	ed for I	OHW			1	7kW Ev	o shoul	d not b	e used f	foi

LR—Long Reheat Time

Twin coil tanks are tested using the primary coil only

TIS - Hot Water Cylinder Selection Guide – 9.0 Page(s) 4 of 6

Hot Water Cylinder Selection Guide

Joule Hot Water Cylinders

Single Tank and twin coil operation

			Joule	e Cyclon	e Cylind	der Sing	gle Coil			J	oule Cy	linder T	win Co	il
		4.5.0	100	24.0	250	200	400	500		200	250	200	400	
		150	180	210	250	300	400	500		200	250	300	400	5
K	lensa													
1	Part	95-	95-	95-	95-	95-	95-	95-		95-	95-	95-	95-	9
Nu	umber	162	A 163A	164A	165A	166A	168A	169A		197A	198A	199A	200A	2
									28mm					
									Coil Pres-					
									sure drop					
		0.01	0.02	0.02	0.02	0.03	0.1	0.1	(bar)	0.08	0.09	0.09	0.1	(
H	Heat								Meter					
Р	ump								Coil size					
	ad Size	1.7	2	2	2.5	2.5	4	4	(m ²)	2.8	2.8	3.2	4	
	3	\checkmark	 ✓ 	\checkmark	✓(LR)	✓(LR)	✓(LR)	✓(LR)		\checkmark	✓(LR)	✓(LR)	✓(LR)	~
	6	\checkmark	 ✓ 	 ✓ 	✓	✓(LR)	✓(LR)	✓(LR)		\checkmark	\checkmark	✓(LR)	✓(LR)	~
	7	\checkmark	 ✓ 	\checkmark	\checkmark	✓(LR)	✓(LR)	✓(LR)		\checkmark	\checkmark	✓(LR)	✓(LR)	√
	9	\checkmark	 ✓ 	 ✓ 	 ✓ 	✓	✓(LR)	✓(LR)		\checkmark	\checkmark	\checkmark	✓(LR)	~
	13	✓	 ✓ 	 ✓ 	 ✓ 	✓	✓	\checkmark		\checkmark	\checkmark	✓	\checkmark	
	15	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		×	×	\checkmark	\checkmark	
	17		17kW	Evo shou	ıld not b	e used f	or DHW		J .	17kW E	vo shoul	ld not be	e used fo	or [

Twin coil tanks are tested using the primary coil only

Long Reheat Time

LR—

500

95-201A

0.1

4 ✓(LR) ✓(LR) ✓(LR) ✓(LR) ✓

TIS - Hot Water Cylinder Selection Guide – 9.0 Page(s) 5 of 6

Phase Change Material Heat Batteries and Evos.

It is possible to replace the hot water cylinder with a Phase Change Material unit from Sunamp for various sizes of Evo heat pump (see table below). PCM heat batteries offer an alternative DHW storage solution, they compete to replace hot water tanks in heating systems, particularly where space is limited. The heat battery stores and releases energy during melting and freezing of the PCM. This process occurs at a constant temperature, which means that the PCM can store a large amount of energy at a lower temperature (or lower volume) than an indirect hot water tank. The potential for lower storage temperatures makes PCM an attractive prospect for heat pumps, which are more efficient at lower flow temperatures.

Heat Pump	Sunamp Unit	Energy Stored (kWh)	Volume of Water to 40C (l)	Volume of Water at 40C (l)	Notes
7kW Evo	Thermino i 210	6.18	113	152	HP connected to smaller coil, DHW connected to larger coil. No additional water pump.
9kW Evo	Thermino i 210	5.74	110	141	HP connected to larger coil. DHW connected to smaller coil No additional water pump.
7kW Evo	Thermino i 150	4.3	86	106	HP connected to smaller coil, DHW connected to larger coil. No additional water pump.
9 <mark>kW Evo</mark>	Thermino i 150	4.21	84	104	HP connected to smaller coil, DHW connected to larger coil. No additional water pump.

The volume of hot water to 40°C is the total volume that passed through the PCM and came out at a temperature above 40°C. The volume of hot water at 40°C, is the total volume that would be obtained if a mixing valve were used to maintain a 40°C output, by mixing in 5°C mains water.

Evo - connected to the smaller coil, DHW connected to the larger coil with the exception of the 9kW Evo & Thermio i 210 pairing which is connected to the large coil, DHW connected to the small coil

TIS - Hot Water Cylinder Selection Guide – 9.0 Page(s) 6 of 6

Phase Change Material Heat Batteries and Shoebox Heat Pumps.

It is possible to replace the hot water cylinder with a Phase Change Material unit from Sunamp for various sizes of shoebox heat pump (see table below). However it is recommended that the 6kW Shoebox is not combined with the Sunamp Phase Change Heat Batteries, without changes at commissioning.

Heat Pump	Sunamp Unit	hit Energy Water to 40C Water		Volume of Water at 40C (I)	Notes			
3kW Shoebox	Thermino i 150	4	n/a	100				
3kW Shoebox	Thermino i 210	8	n/a	170	Long Reheat time			
6kW Shoebox	Thermino i 150	Not recommended unless the second compressor set point is lowered In effect changing back to a three kW.						
6kW Shoebox	Thermino i 210	Not recommended unless the second compressor set point is lowered In effect changing back to a three kW.						

For the shoeboxes, charging should be via the heat battery large coil and discharge via the small coil.

The volume of hot water to 40°C is the total volume that passed through the PCM and came out at a temperature above 40°C. The volume of hot water at 40°C, is the total volume that would be obtained if a mixing valve were used to maintain a 40°C output, by mixing in 5°C mains water.