Whether you’re a homeowner, self builder, developer, landlord, or business, find the perfect ground source heat pump for your project with Kensa's heat pump solutions.
Kensa's design & support services coupled with a comprehensive range of ground source heat pumps ensure homeowners enjoy significant energy efficiency, bill savings & government funding.
Ground source heat pumps are the most energy-efficient heating technology available, so only a small proportion of the power needed to run the heat pump will be affected by rising energy costs – the rest of the energy comes from the ground.
Kensa’s ground source heat pumps bring social housing communities together to help eradicate fuel poverty & reduce heating bills. Using cost-effective Shared Ground Loop Arrays, housing associations can reduce carbon emissions on a huge scale.
A ground source heat pump is the perfect heating solution for luxury new-build homes. A highly efficient Kensa ground source heat pump can fit discreetly inside a property to provide 100% of all heating and hot water needs, plus cooling capabilities.
Swimming pools, hot tubs, boat sheds, boats, water parks: you name it, we've fitted it! Ground source heat pumps offer an energy-efficient solution to heating & cooling water sources, as well as using water sources to heat & cool buildings.
Ground source heat pumps are an ideal system for schools, as they are a ‘fit-and-forget’ technology which offers substantial carbon and cost reductions.
The Shoebox NX is a compact powerhouse with A+++ efficiency, quiet operation, and a 25+ year lifespan. Engineered to exceed compliance needs, the Shoebox NX is ideal for all property types, including complex-to-decarbonise flats and terraces.
Small but packing a punch, the award-winning Kensa Shoebox series produces temperatures up to 65°C. It offers an efficient, practical & affordable heating & hot water solution.
The efficient Evo series features 7kW, 9kW, 13kW & 15kW single phase models, & a 15kW three phase model. The elegant, simple-to-install, & ErP A+++ rated Evo series offers a 15% gain in efficiency & low noise outputs, perfect for medium to large homes.
The Kensa Q comprises of modular three phase models to provide tailored outputs for high heating & cooling demands, providing greater flexibility & compatibility with Building Management Systems
Installers are integral to the UK’s transition to low-carbon heating. Kensa is continually building a network of trusted, recommended and experienced installers across the UK.
Kensa's Partner Network recognises installers for their proven skills and experience with ground source heat pumps and offers exclusive member benefits.
Kensa offers a free, progressive and tailored training pathway for installers from all backgrounds. Start from the ground up or add to your existing knowledge whilst learning at your own pace.
Kensa has a nationwide network of trusted installers to help with your ground source heat pump project. Simply submit your plans and Kensa will recommend the right installer for you.
Kensa Heat Pumps is the UK’s number one ground source heat pump brand. We offer ground source heat pump training for trainers in training centres, sharing our extensive knowledge of ground source heat pump fundamentals and best practices with your trainers and students.
The Boiler Upgrade Scheme is a government-proposed scheme to deliver grants of up to £7,500 towards heat pump installations in UK households. The scheme, which was known as the Clean Heat Grant, is intended to replace the Domestic Renewable Heat Incentive (RHI) from April 2022 to 2028.
The ECO supports retrofit efficiency works in the domestic sector with an upfront grant, with a particular focus on vulnerable consumer groups & hard-to-treat homes.
The Public Sector Decarbonisation Scheme is a fund dedicated to heat decarbonisation & capital energy efficiency projects in non-domestic public sector buildings across England.
Through this scheme, an investor funds the network – known as Shared Ground Loop Arrays – to cover the most expensive aspect of the project. In return, the investor can charge connection fees if they wish.
Home » What are Ground Source Heat Pump Boreholes?
What are Ground Source Heat Pump Boreholes?
Ground source heat pump boreholes are vertical ground arrays or collectors used to extract heat energy from rock to a ground source heat pump. They save space and minimise disruption in heat pump installation projects, as you usually only need 150mm width of garden space per borehole. Depths of boreholes range from around 60m to 200m.
How much do ground source heat pump boreholes cost?
A borehole is a more expensive alternative to slinky pipes, as there is an additional cost to preparing and drilling the borehole.
However, boreholes become economically viable on Networked Heat Pump schemes for multiple residential properties, large commercial projects and any site with heat loads above 100kW. This is due to reduced mobilisation costs for the drilling rig, efficiencies of scale when on site, and the degree of diversification being applied.
In larger projects featuring shared ground loops, borehole depths or numbers are reduced compared to individual system installations.
There are two types of boreholes that can be used with ground source heat pumps: closed loop and open systems. A closed loop borehole is quite literally a closed circuit containing a heat transfer fluid, while an open loop borehole uses a natural water source as its transfer fluid – exposing it to external elements.
Open loop borehole
A closed loop system is the most common type of borehole – using rock as its heat source. You can see more about open loop systems on our water source page.
Ground source heat pump boreholes are generally used for Networked Heat Pump schemes, large commercial projects with high heat demands, or smaller sites where space saving is a priority. They’re also ideal when there is insufficient space for horizontal arrays such as slinky pipes in trenches.
Boreholes are Kensa’s preferred ground array for clusters of properties connected to Networked Heat Pumps, which is common in social housing or new-build development schemes.
Typically one borehole is required per property. However, in Networked Heat Pump schemes, one deeper borehole could serve two properties, hence why they are referred to as a Shared Ground Loop Array.
How deep are boreholes?
Boreholes are typically 60 to 200m deep and 150 mm wide. Kensa is also currently trialling the potential of medium-depth boreholes from 300-400m, which could open up more opportunities for ground source heat pump projects in the most congested of city-centre locations.
A drilling contractor is responsible for drilling the borehole. It is a specialist discipline, so you should seek the advice of a geothermal drilling company if you’re thinking about using a borehole for a ground source heat pump.
Solar energy is stored in surface soil and dissipates through the rock layers beneath our feet, forming a stable heat source. This is where boreholes collect their energy from.
In closed loop boreholes, a specialist drilling rig drills to depths of up to 200m to form the borehole.
The borehole is connected to the heat pump
At the installation stage, a U-shaped straight pipe is inserted into the borehole and connected via a trench to the ground source heat pump. The space around the U-pipe in the borehole is backfilled with a thermal grout to ensure thermal conductivity from the ground to the borehole pipe.
Heat transfers from ground to heat pump
The ground source heat pump circulates heat transfer fluid through the U-pipe. This cold fluid absorbs and moves the ground’s low-grade energy towards the ground source heat pump. Once the fluid surrenders its energy from the ground to the heat pump, the cooled fluid returns to the borehole to begin the circuit all over again – hence the ‘closed loop’ expression.
What should I consider before installing a borehole?
Sizing & efficiency of the boreholes
The design of boreholes for small, individual applications can be calculated with tables, empirical values and guidelines. A popular parameter to calculate the required depth of a borehole is through the ground’s specific heat extraction properties, which is expressed as Watt per metre borehole length (W/m).
A borehole’s performance is dependent on the location’s geology and its thermal conductivity, the efficiency of the heating distribution system and the building’s heat demand. Typically, a 75 to 100m borehole provides 3 to 5 kW of extractable heat based on 1800 running hours a year.
For larger commercial projects, such as those with heat demands above 100kW, a thermal response test (TRT) is required to calculate accurate borehole sizing.
Ground conditions
A geological survey will provide an indication of the type of material that the borehole is going to be drilled into. This material can determine the design of the borehole field.
Different geological conditions have different heat transfer characteristics. For example, a borehole in loose stones has an energy extraction rate of approximately 20 watt per metre (W/m), while granite has an extraction rate of 55 to 70W/m.
A geological survey should also indicate whether there are any mine workings or aquifers present. In these instances, an open loop borehole may utilise the high thermal conductivity properties in the subterranean water sources.
Kensa can recommend expert borehole geological surveyors to assess your geology and specifications for a borehole. Just tell us about your project.
Spacing between multiple boreholes
For projects using multiple boreholes in a Shared Ground Loop Array, such as Networked Heat Pump schemes or large heat demand commercial projects, the boreholes should be spaced at 5 to 6m between centres to avoid any interference between each ground collector. This ensures the ground can recover its heat, and stops the ground from freezing.
The process of making boreholes for ground source heat pumps
1. Drilling a ground source heat pump borehole
A borehole consists of a hole drilled between 60 to 200m deep. Typically, the diameter of a borehole is around 110 to 150mm, but this depends on the type of machine being used to drill the borehole. It also depends on the diameter of the borehole pipe, which is usually between 32 to 40mm.
The first few metres of a borehole is generally sleeved with a casing to prevent the sides from collapsing. The depth of this casing depends on the material that the borehole is drilled into and the depth of soil.
Multiple boreholes are generally placed 5 to 6m apart. However, for large commercial projects, the interference from one borehole to another must be calculated to ensure there is adequate spacing and sufficient depth between them.
The drilling rigs used for boreholes come in many shapes and sizes. Small drilling rigs can operate in restricted access sites and small gardens, while others are designed for larger commercial projects.
2. Inserting the borehole pipework for the heat pump
A single loop of pipe – usually PE100 HDPE or Pex pipe – is inserted into the borehole. Along with the borehole pipe, a small tremie pipe, which is about 25 to 40mm, is also attached to the borehole pipe.
The tremie pipe is used to fill the borehole with thermal grout and is withdrawn as the grout is injected. The grout provides a thermal path, which allows the energy within the ground to be absorbed by the fluid circulating the borehole pipe. The driller will take responsibility for grouting the hole using specialist pumping equipment.
Single loops are normally used in the UK, but it’s possible to use a twin loop or duplex system to try and extract more energy.
A larger diameter hole is required for a twin loop system, and the borehole’s energy yield only increases by an approximate factor of 1.25. This also depends on the hole and pipe diameter, the distance from the next borehole, how the pipe is inserted, and the thermal grouting. The pipe is either filled with water or weighted at the end, making it easier to insert into the borehole.
3. Testing the ground source heat pump borehole
The drilling contractor will perform a pressure test, cap the plastic ground array pipe, and issue a certificate before leaving the site.
For larger commercial projects (nominally over 100kW), guidelines tend to overestimate the number of required boreholes. It’s recommended that a thermal response test (TRT) is carried out on a representative borehole. A thermal geologist can then combine the results from a TRT, with the heating and cooling profile of the building, to calculate the type, depth, number and spacing of boreholes. The cost of completing a TRT is generally recovered in the reduction in the number of boreholes required.
4. Connecting the boreholes to the ground source heat pumps
If more than one borehole is required, the pipes should be connected using a manifold. This ensures equal distribution of flow across each borehole. Manifolds can be located at the building or the pipes can be connected in a subterranean manifold within a trench at the edge of the bore field.
To avoid any joints and eliminate the need for any electrofusion welding – which requires specialist equipment and can attract additional costs – it’s sensible to use specially extended borehole probes. These are simply laid in a trench between the top of the borehole and the manifold on the side of the building.
Kensa recommends you compare the rates of groundwork contractors and drilling contractors to identify the best price for this trenching work.
Is a ground source heat pump borehole right for my project?
Choosing the right ground array is an important stage of any ground source project. Kensa can help you with anything from specification and sizing to design and aftersales support.
Heating communities – new and old – with district ground source heat pumps has never been easier. Discover the multiple energy sources Kensa Contracting utilises to supply sustainable, low carbon heat to communities via ambient temperature loops and individual Kensa ground source heat pumps inside each dwelling.
In Spring 2015 Trent & Dove Housing and Kensa Contracting delivered the UK’s most ambitious retrofit upgrades programme of its time, replacing electric night storage heating with Kensa ground source heat pumps connected to a micro heat network over 133 one and two-bedroom bungalows over 15 different sites throughout Burton-upon-Trent. This video documents this multi-award-winning…
A Shropshire Rural Housing Association’s ground source heat project features eight new-build semi-detached houses and detached bungalows adjacent to a cluster of eight retrofit properties that also had Kensa ground source heat pump’s installed just 15 months before. Each new build home contains an individual 6kW Kensa Shoebox heat pump fed via a communal borehole…
Medium-depth boreholes, which are drilled 300m below ground, differ from standard ground source heat pump borehole depths of 100 – 230m. Here, we examine the ways in which deeper boreholes could bring about more ground source opportunities for projects with limited land area – just like Daisyfield tower blocks. Is there unexploited potential in medium-depth…